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A Method for Incorporating Gauss’ Law 
into Electromagnetic PIC Codes 

BARRY MARDER 

An algorithm is presented which solves a moditied set of Maxwell’s equations, none of them 
elliptic, in an electromagnetic PIC type code. The algorithm prevents large violations of 
Gauss’ law by diffusing away numerical errors arising from the particle-to-grid apportionment 
method. There are no restrictions on the manner in which charge and current densities are 
determined from the particle distribution, In particular, point particles and simple linear inter- 
polation are used. 1 19X7 Acedemlc Press, Inc 

Sandia National Laboratories makes extensive use of two-dimensional elec- 
tromagnetic particle-in-cell (PIC) codes for plasma simulation and is currently 
engaged in a project to develop a general purpose three-dimensional code. The 
algorithm described here is under consideration both for use in the 3-D code and 
for implementation in existing 2-D codes. 

Faraday’s and Ampere’s laws (in dimensionless variables), 

SB/ar = -curl E (1) 

c?E/i?t = curl B -J, (2) 

are mathematically consistent with Gauss’ law, 

div E = p, (3) 

provided 

div J + dpldt = 0. (4) 

To solve these equations in problems in which there is plasma flow, particle-in-cell 
codes are often used. In these codes, the plasma is represented by a large number of 
numerical “particles” which carry mass and charge and move through an underly- 
ing grid. The grid stores ensemble averages such as charge and current densities, as 
well as electric and magnetic fields obtained from differential equations. There is a 
constant interplay between the grid and particles as the grid quantities are used to 
define the forces which move the particles, and the particles send position and 
velocity information back to the grid. 
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Perhaps the simplest method for computing the charge and current densities in a 
PIC code is to treat the particles as idealized point sources of charge and use linear 
interpolation (also called area-weighting) to assign these quantities to the corners of 
the cell in which the particle is found. This technique may be thought of alter- 
natively as using polygonal particles (for example, cubes) in which the volume 
overlapping a cell is apportioned to that cell. The assignment of charge by this 
method is continuous as the particle moves through the grid. When current and 
density are determined by this method, however, (4) will, in general, be only 
approximately satisfied. If the electric and magnetic fields are then determined from 
(1) and (2) (3) will not be solved exactly, As the code runs, discrepancies between 
the charge and the divergence of the electric field could develop. 

In these calculations, in which the electric fields are determined from their time 
derivatives while charge and current densities are obtained from the particle dis- 
tribution, Gauss’ law resembles an energy integral in that it is derivable from the 
equaions used to solve the problem but is not needed for the calculation. Energy 
integrals are used as a check of a code’s accuracy. If the code is consistent with the 
equations and is well written, the energy error should be small. Gauss’ law should 
also be nearly satisfied and could serve as another accuracy check. However, 
because it enjoys the status of one of Maxwell’s equations, and indeed becomes the 
governing equation in electrostatic problems, it is felt that more attention should be 
given to it. 

Three basic approaches [l] have been taken to include Gauss’ law in elec- 
tromagnetic codes. In the first method, either the vectors are decomposed into curl- 
free and divergence-free form or the vector potentials are used. Poisson’s equation is 
solved at every time step for the electrostatic component of the field. There are no 
restrictions on the particle-to-grid apportionment technique. While these methods 
accurately reflect the physics, solving Poisson’s equation at every time step can be a 
very time-consuming operation in a general purpose three-dimensional code. 

A second approach is to solve (1) and (2) as they stand but apply a Poisson 
solver correction to the electric field after a certain number of time steps. If the 
“fixes” are applied too frequently, however, these codes will still be very time-con- 
suming. If they are applied too infrequently, abrupt discontinuities may be 
introduced. When this “fix” is applied, of course, the electric field is no longer deter- 
mined solely by Eq. (2). One has sacrificed Ampere’s law for Gauss’. In any case, it 
is aesthetically more pleasing to perform the same operations every time step. 

The third method for satisfying (3) is to compute the charge and current densities 
in such a manner that (4) is exactly satisfied. The MAGIC [2] code uses this 
approach. This will, in general, require abandoning the simple linearly interpolated 
point particle method for a noisier, more complicated one. In these algorithms, a 
particle is considered to occupy a volume the size of the gird cell which contains it. 
When a particle intersects a grid vertex, charge and current densities are assigned 
there. Thus, only one grid point, that nearest the particle center, is affected by it. 
The on-off nature of this nearest-grid-point apportionment technique introduces 
numerical noise into the computation. To facilitate the exact solution of Eq. (4) 
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particles in MAGIC move parallel to the underlying grid. Thus, there are two ways 
a particle can traverse a diagonal path in a two-dimensional calculation and six 
available paths in three dimensions. 

To avoid the type of problems inherent in these algorithms, a simple new method 
for solving Maxwell’s equations in electromagnetic PIC codes has been developed 
which 

(a) limits the buildup of error in Gauss’ law, 
(b) places no restriction on how the charge and current densities are 

obtained from the particles, 
(c) does not require solving an elliptic equation, 
(d) performs the same operations at each time step, and 

(e) is readily extendable to three dimensions. 

Define 

F(.Y, f) = div E - p. (5) 

Gauss’ law becomes simply F= 0. For the numerical solution, (2) is altered by 
adding a multiple of the gradient of F to the right-hand side: 

c?Eldt = curl B-J + ngrad F. (6) 

This added term will be referred to as a “pseudo-current.” Notice that this is 
mathematically consistent with Maxwell’s equations; one equation has simply been 
added to another. d is a numerical parameter chosen small enough not to affect 
adversely the stability but large enough to perform the desired function. The com- 
putation of grad F in the right-hand side of (6) requires only minimal additional 
computer time as most of the time in PIC codes is used in the particle loops. It can 
be easily shown that F satisfies the inhomogeneous diffusion equation 

(7F/?t - dV’F= - (i?p/dt + div J). (7) 

The source term for F on the right-hand side of (7) reflects the extent to which the 
charge and current densities as defined on the grid satisfy the charge conservation 
equation, (4). It should be pointed out that exact charge conservation is automatic 
in PIC codes as the particles themselves carry the charge. A non-zero forcing term 
in (7) does not reflect charge creation or destruction, nor any other physical 
phenomenon, but is simply an artifact of the particular finite differencing and par- 
ticle-to-grid apportionment technique. By virtue of (7), when F vanishes on the 
boundary, the code “diffuses” the error away. The parameter d, which governs the 
speed at which F diffuses, should be chosen so that the rate at which F is generated 
by the code is roughly balanced by the rate at which it dissipates. This will insure 
that, although F does not vanish identically, it does not build up as the code runs, 
but remains acceptably small. The algorithm is, in a sense, self-healing. 
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The stability restriction introduced by this addition is the well-known heat 
equation constraint [ 31 

2d At/Ax’ < 1, 63) 

where Ax and At are the numerical space and time steps. In practice, d will usually 
be considerably below this limit. Other than this obvious limitation, no adverse 
effects on stability have been observed from this technique. Adding too much dif- 
fusion, however, can suppress the very physics the code is attempting to model. 
Adding too little, or none at all, allows the density obtained from the particles to 
differ from that obtained from the divergence of E to what may be an unacceptable 
degree. This is most noticeable in a vacuum cell where, although div E should 
vanish, it could remain non-zero because of the earlier presence of plasma. 

For any domain in which both density and current vanish on the boudary, and 
for which no particle creation occurs inside, the numerical integral of the forcing 
term in (7) vanishes. There is then no net generation of F inside the region. Local 
numerical errors of one sign are compensated for by errors of the opposite sign 
elsewhere in the domain. The pseudo-current can then be thought of as a diffusive 
flow of electric field which tends to elimate these errors. 

Because a gradient has been added to (2) the wave equation for B, obtained by 
combining (1) and the curl of (2), 

8’B/8t2 = V2B + curl J (9) 

remains unchanged both mathematically and numerically (assuming the curl of a 
gradient vanishes in the finite difference scheme). The magnetic component of elec- 
tromagnetic waves propagates exactly as before. Only the electric field component 
is affected. In the pure vacuum case, of course, F remains identically zero. 

The time-difference analog of (6) is 

Ek + 112 - E’~ ‘I2 = dt[curl Bk - Jk + d grad F” ‘!‘I, (10) 

where k indicates discrete time steps. This equation correctly centers the B and J 
terms but not the F term, resulting in only first-order accuracy for this term. If it 
were deemed necessary, the explicit numerical solution of (6) can be made second- 
order accurate in time either by using a particular value of d or another differencing 
technique. It does not seem necessary to do this for the following reason. Rather 
than having added grad F(x, t) to (2), suppose we had added grad F(x, t-At/2). 
We would still have appended one of Maxwell’s equations to a modified form of 
another, but the difference equation, (lo), would now be second-order accurate. 
Equation (7) would, of course, be slightly altered. The point of this semantic quib- 
ble is that, despite the appearance of lost accuracy, the formal second-order 
accuracy of the original algorithm has, in fact, not been degraded. 

This algorithm has been tested by simulating numerically several microwave 
generating devices, including backward wave oscillators, cross-field amplifiers, and 
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normal and inverted magnetrons [4]. The code appears to perform quite well, 
accurately reproducing the experimentally observed behavior of these devices. For 
illustrative purposes the simulation of the Stanford magnetron [S] will be discussed 
here. The magnetron is a cylindrical device with a center cathode and coaxial 
anode. The anode is grooved to lower the phase velocity of azimuthally traveling 
electromagnetic waves. An applied axial magnetic field insulates the diode. The 
voltage causes electrons to be emitted from the cathode which then undergo an 
E x B drift around the device. When the drift velocity of these electrons is equal to 
the phase velocity of the electromagnetic wave, the electrons can feed energy into 
the wave, generating microwaves. Three simulations of the same device will be 
presented to illustrate the algorithm. The first has no pseudo-current, the second 
has an amount deemed sufficient to keep Gauss’ law reasonably satisfied, and the 
third has an excessive amount of pseudo-current. The grid in these examples con- 
sists of 34 nodes in radius and 43 nodes in theta. The time step was taken to be 
85 % of its Courant stability limit. Particles are emitted from the cathode and about 
600 are present at saturation. The cathode radius is 2.54 cm, the anode radius is 
5.08 cm, the depth of the voids is 1.74 cm, and the void angle is 14.5 degrees. The 
applied voltage is 500 kV and the magnetic field is 0.155 Tesla. There are 12 vanes 
in the full device; sixfold periodicity is assumed. With these parameters, a run takes 
about an hour of CPU time on a VAX 8600. 

The three values of d in the code are 0, 0.001, and 0.01. To express these in 
physical units, (6) is written in dimensional form: 

Ed aE/dr = curl B/p, - J + d grad(e, div E - p). (11) 

The pseudo-current parameter, d, has dimensions of length squared divided by 
time. The actual value of d is obtained by multipling the code values by the length 
scale (cathode radius = 2.54 cm) times the velocity scale (speed of light). 

Figure 1 shows the quasi-equilibrium state of the magnetron at about 1 ns. 

FIG. 1. Electron distribution in the Stanford magnetron simulation at about 1 ns. Inner circle is the 
cathode. 
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FIG. 2. Flow at about 15 ns. 
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FIG. 3. RF field in void between vanes for d = 0. 
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FIG. 4. RF field in void between vanes for d=O.OOl 
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FIG. 5. RF field in void between vanes for d-0.01. Note shifted time axis 

Figure 2 shows the saturated state at about 15 ns in which electrons form “spokes” 
which circle the device (counterclockwise in the figure). The oscillation frequency is 
consistent with the experiment, and the equilibrium and spoke development corres- 
pond to those seen in magnetron simulations using other codes [6,7]. 

Figures 3, 4, and 5 are plots of the RF field in the void between the vanes for the 
three cases. Notice that since the pseudo-current has a smoothing effect on the 
calculation, the onset of instability takes longer in the third case. Once it starts, 
however, its growth rate and frequency are the same as the previous runs. Figure 6 
shows the maximum F in the domain divided by the maximum density in the 
domain for the three cases. It does not take much pseudo-current to dramatically 
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6. Maximum violation of Gauss’ law divided by the maximum density 6. Maximum violation of Gauss’ law divided by the maximum density for d=O, 0.001, and 
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reduce this error. The observation that the first two simulations look almost iden- 
tical reflects the fact that, for the length of time this problem ran, the error in 
Gauss’ law did not strongly affect the solution. Although it is not obvious on the 
log plot, this error grows linearly in the first run and were the simulation to con- 
tinue much longer its validity would have to be questioned. The error in the second 
run remains small and essentially constant throughout the run. This seems the ideal 
choice for d. With this choice for d, the pseudo-current terms are about an order of 
magnitude below the current density terms in the equations. 

The algorithm presented here solves a modified set of Maxwell’s equations, none 
of which are elliptic. In doing so, it bounds Gauss’ law by diffusing away errors 
arising from particle-to-grid apportionment techniques. If sufficient particles are 
present and the apportionment scheme is consistent with the underlying physics, 
these errors should not be large to begin with, but without the pseudo-current, they 
could build up in time. This technique places no restriction on the method in which 
charge and current densities are determined from the particle distribution. 
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